80 research outputs found

    Multifunction MMIC For Miniaturized Solid State Switch Matrix

    Get PDF
    This paper describes a new multifunction MMIC expressly designed for a reconfiguration matrix equipment.This MMIC has been developed using a standard PHEMT process and includes two switches,a totally switchable-off amplifier and a temperature compensation circuit.The complete circuit has also been designed to interface a standard CMOS control level. Performed simulations and obtained results demonstrate the effectiveness of this approach in reaching compactness and reliability of satellite equipment

    Seasonal Ensemble Predictions of West African Monsoon Precipitation in the ECMWF System 3 with a Focus on the AMMA Special Observing Period in 2006

    Get PDF
    Abstract The West Africa monsoon precipitation of the ECMWF operational Seasonal Forecast System (SYS3) is evaluated at a lead time of 2–4 months in a 49-yr hindcast dataset, with special attention paid to the African Monsoon Multidisciplinary Analysis (AMMA) special observation period during 2006. In both the climatology and the year 2006 the SYS3 reproduces the progression of the West Africa monsoon but with a number of differences, most notably a southerly shift of the precipitation in the main monsoon months of July and August and the lack of preonset rainfall suppression and sudden onset jump. The model skill at predicting summer monsoon rainfall anomalies has increased in recent years indicating improvements in the ocean analysis since the 1990s. Examination of other model fields shows a widespread warm sea surface temperature (SST) bias exceeding 1.5 K in the Gulf of Guinea throughout the monsoon months in addition to a cold bias in the North Atlantic, which would both tend to enhance rainfall over the Gulf of Guinea coast at the expense of the monsoon rainfall over the Sahel. Seasonal forecasts were repeated for 2006 using the same release of the atmospheric forecast model forced by observed SSTs, and the monsoon rainfall reverts to its observed position, indicating the importance of the SST biases. A lack of stratocumulus off the west coast of Africa in SYS3 was hypothesized as a possible cause of the systematic rain and SST biases. Two more sets of ensembles were thus conducted with atmospheric model upgrades designed to tackle radiation, deep convection, and turbulence deficiencies. While these enhancements improve the simulation of stratocumulus significantly, it is found that the improvement in the warm SST bias is limited in scope to the southern cold tongue region. In contrast, the changes to the representation of convection cause an increase in surface downwelling shortwave radiation that, combined with latent heat flux changes associated with the wind stress field, increases the SST warm bias on and to the north of the equator. Thus, while the precipitation shortfall in the Sahel is reduced with the new physics, the overestimated rainfall of SYS3 in the coastal region is further enhanced, degrading the model systematic errors overall in the West Africa region. Finally, the difference in the systematic biases between the coupled and uncoupled systems was noted to be an impediment to the development of seamless forecasting systems

    Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe

    Get PDF
    Analysis of observations indicates that there was a rapid increase in summer (June-August, JJA) mean surface air temperature (SAT) since the mid-1990s over Western Europe. Accompanying this rapid warming are significant increases in summer mean daily maximum temperature, daily minimum temperature, annual hottest day temperature and warmest night temperature, and an increase in frequency of summer days and tropical nights, while the change in the diurnal temperature range (DTR) is small. This study focuses on understanding causes of the rapid summer warming and associated temperature extreme changes. A set of experiments using the atmospheric component of the state-of-the-art HadGEM3 global climate model have been carried out to quantify relative roles of changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gases (GHGs), and anthropogenic aerosols (AAer). Results indicate that the model forced by changes in all forcings reproduces many of the observed changes since the mid-1990s over Western Europe. Changes in SST/SIE explain 62.2% ± 13.0% of the area averaged seasonal mean warming signal over Western Europe, with the remaining 37.8% ± 13.6% of the warming explained by the direct impact of changes in GHGs and AAer. Results further indicate that the direct impact of the reduction of AAer precursor emissions over Europe, mainly through aerosol-radiation interaction with additional contributions from aerosol-cloud interaction and coupled atmosphere-land surface feedbacks, is a key factor for increases in annual hottest day temperature and in frequency of summer days. It explains 45.5% ± 17.6% and 40.9% ± 18.4% of area averaged signals for these temperature extremes. The direct impact of the reduction of AAer precursor emissions over Europe acts to increase DTR locally, but the change in DTR is countered by the direct impact of GHGs forcing. In the next few decades, greenhouse gas concentrations will continue to rise and AAer precursor emissions over Europe and North America will continue to decline. Our results suggest that the changes in summer seasonal mean SAT and temperature extremes over Western Europe since the mid-1990s are most likely to be sustained or amplified in the near term, unless other factors intervene

    Optimizing the procedure of grain nutrient predictions in barley via hyperspectral imaging

    Get PDF
    Hyperspectral imaging enables researchers and plant breeders to analyze various traits of interest like nutritional value in high throughput. In order to achieve this, the optimal design of a reliable calibration model, linking the measured spectra with the investigated traits, is necessary. In the present study we investigated the impact of different regression models, calibration set sizes and calibration set compositions on prediction performance. For this purpose, we analyzed concentrations of six globally relevant grain nutrients of the wild barley population HEB-YIELD as case study. The data comprised 1,593 plots, grown in 2015 and 2016 at the locations Dundee and Halle, which have been entirely analyzed through traditional laboratory methods and hyperspectral imaging. The results indicated that a linear regression model based on partial least squares outperformed neural networks in this particular data modelling task. There existed a positive relationship between the number of samples in a calibration model and prediction performance, with a local optimum at a calibration set size of ~40% of the total data. The inclusion of samples from several years and locations could clearly improve the predictions of the investigated nutrient traits at small calibration set sizes. It should be stated that the expansion of calibration models with additional samples is only useful as long as they are able to increase trait variability. Models obtained in a certain environment were only to a limited extent transferable to other environments. They should therefore be successively upgraded with new calibration data to enable a reliable prediction of the desired traits. The presented results will assist the design and conceptualization of future hyperspectral imaging projects in order to achieve reliable predictions. It will in general help to establish practical applications of hyperspectral imaging systems, for instance in plant breeding concepts

    Stable oxygen isotopes in Romanian oak tree rings record summer droughts and associated large-scale circulation patterns over Europe

    Get PDF
    We present the first annual oxygen isotope record (1900 – 2016) from the latewood (LW) cellulose of oak trees (Quercus robur) from NW Romania. As expected, the results correlate negatively with summer relative humidity, sunshine duration and precipitation and positively with summer maximum temperature. Spatial correlation analysis reveals a clear signal reflecting drought conditions at a European scale. Interannual variability is influenced by large-scale atmospheric circulation and by surface temperatures in the North Atlantic Ocean and the Mediterranean Sea. There is considerable potential to produce long and well-replicated oak tree ring stable isotope chronologies in Romania which would allow reconstructions of both regional drought and large-scale circulation variability over southern and central Europe

    Fully integrated Ka/K band hermetic receiver module

    Get PDF
    This paper presents an Engineering Model of a fully integrated,hermetic receiver as developed for commercial space flight applications.Repeatable performance especially at K band frequencies is difficult and costly in a production environment. State-of-the-art packaging technology and a family of dedicated MMICs were employed in order to guarantee performance as well as reduce production and alignment costs.This combined with Alenia Spazio ’s extensive,flight proven heritage,has produced a receiver aimed at both the transparent and regenerative payload markets

    A Technique to Design MMICs for Space Applications and High Production Yields

    Get PDF
    In this paper a MMIC design technique, oriented to the optimization of the production yields, is illustrated together with the obtained results. This method, based on a sensitivity analysis, i.e. on the circuit behavior for variations of passive elements from their nominal value, and on the contemporary determination of the production yields, allows the identification the circuit elements to obtain high production yield. Moreover it allows an appropriate choice of the circuit topology. As example, this technique has been applied to design a MMIC to be employed on equipments where a high number of devices is required

    MMICs for commercial satellite applications: from C and Ku to Ka band and millimeterwave

    Get PDF
    The application of MMIC technology to space hardware have seen a strong increase in the last years mainly to support the market demand for commercial satellite applications. Radiofrequency and microwave unit integrated in communication payloads for fixed (FSS), broadcasting (BSS) as well as mobile (MSS) services made extensively use of gallium arsenide MMIC designed and realised with european and american foundries. A new boundary will be the design and development of low cost, high production rate space hardware for satellite constellations like Celestri, Cyberstar, EuroSkyWay. SkyBridge, Spaceway, Teledesic. The paper will focus the application of MMIC technology in the Alenia Aerospazio on-board equipment engineering and production and will give a map of the present developments in conjunction with future trends
    corecore